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Abstract

We give a formula for the twisted root number W (A, τ) associated to an
abelian variety A over a number field F and a complex representation τ of
the absolute Galois group of F in the case when τ has a real-valued character
and the conductors of A and τ are relatively prime. As an application we
note that the results of E. Kobayashi for elliptic curves can be generalized
to abelian varieties, namely, given the maximal abelian extension F ab of F
the rank of A(F ab) is infinite provided that both the degree of F over Q and
the dimension of A are odd and the parity conjecture holds for A and all its
quadratic twists.

2010 Mathematics Subject Classification: 11G10, 11F80, 11R32.

Introduction
LetA be an abelian variety over a number field F and let τ be a complex continuous
finite-dimensional representation with real-valued character of the absolute Galois
group Gal(F/F ) of F , where F denotes a fixed algebraic closure of F . Attached
to A and τ there is the twisted root number W (A, τ), which we denote simply by
W (A) when τ is trivial. The root number is a sign in the conjectural functional
equation for the L-function of A twisted by τ , and under our assumption on the
character of τ it is equal to ±1. Root numbers are often used for studying and
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predicting facts about ranks of abelian varieties due to the parity conjecture, one
form of which asserts that

W (A,χ) = (−1)rankZ A
χ(F ), (1)

where χ is a one-dimensional representation of Gal(F/F ) of order two (a quadratic
character) and Aχ is an abelian variety over F obtained from A by twisting by χ.

In this note we prove a formula for W (A, τ) assuming that the conductors of A
and τ are relatively prime. It is a generalization of a well-known formula for elliptic
curves. We show that

W (A, τ) = (sign(det τ))g · det τ(N) ·W (A)dim τ , (2)

where g is the dimension of A and N is the conductor of A (see Proposition 1
below). We also remark that (2) allows one to apply the proofs of E. Kobayashi’s
results for elliptic curves [K] to abelian varieties. More precisely, this implies that
if (1) holds for any χ, the degree of F over Q is odd, and the dimension of A is
odd, then the rank of A(F ab) is infinite. (Here F ab denotes the maximal abelian
extension of F contained in F .) The idea of the proof is to use (2) to prove the
existence of infinitely many (linearly independent over F2 with respect to tensor
product) quadratic characters χ satisfying W (A,χ) = −1. The parity conjecture
applied to those χ then gives points of infinite order on A(F ab) and one is to show
that they are linearly independent (see Corollary 5 below for more detail). This
argument has restrictions imposed by the use of (1) and cannot be applied in general
when the degree of F over Q or the dimension of A is even (see Remark 6 below).

The rank of A(F ab) is expected to be infinite for an arbitrary number field F
and an abelian variety A over F ; it is a consequence of the conjecture that F ab is
ample and the theorem stating that for an ample field F of zero characteristic and
an abelian variety A over F the rank of A(F ) is infinite [FP].

Root numbers
We fix an algebraic closure Q of Q and for a number field F by F ab we denote the
maximal abelian extension of F contained in Q.

Proposition 1. Let A be an abelian variety of dimension g over a number field
F and let N denote the conductor of A. Let τ be a complex continuous finite-
dimensional representation of Gal(Q/F ) with real-valued character and of con-
ductor f . Assume that f is relatively prime to N . Then

W (A, τ) = (sign(det τ))g · det τ(N) ·W (A)dim τ (3)

(cf. Prop. 10 on p. 337 in [R2]).
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Proof. For each place v of F let Fv denote the completion of F with respect to v
and let τv be the restriction of τ to the decomposition subgroup of Gal(Q/F ) at v.
Let W (Av, τv) be the local root number associated to Av = A ×F Fv and τv. By
definition

W (A, τ) =
∏
v

W (Av, τv),

where v runs through all the places of F . If v =∞, then

W (Av, τv) = (−1)g dim τ and hence W (Av) = (−1)g (4)

by Lemma 2.1 on p. 4272 in [S]. Suppose v < ∞ and let mv(A) be the exponent
of N at v. Then (3) follows from (4) and Proposition 2 below together with

sign(det τ) =
∏
v=∞

det τv(−1) =
∏
v<∞

det τv(−1).

Proposition 2. Let $v denote a uniformizer of Fv and suppose that det τv is con-
sidered as a multiplicative character of F×v via the local class field theory. Then

W (Av, τv) = det τv(−1)g · det τv($v)
mv(A) ·W (Av)

dim τ . (5)

Proof. Note that det τv($v)
mv(A) does not depend on the choice of $v, since τv

is unramified whenever mv(A) 6= 0. To prove (5) we first recall the definition
of W (Av, τv) (see e.g., [S] for more detail). For a rational prime l different from
the residual characteristic of Fv let Tl(Av) be the l-adic Tate module of Av and let
Vl(Av)

∗ denote the contragredient of Vl(Av) = Tl(Av)⊗ZlQl. Let σ′v = σ′v,A denote
a representation of the Weil–Deligne groupW ′(F v/Fv) of Fv associated to Vl(Av)∗

via the Deligne–Grothendieck construction (see e.g., [R1]). Then

W (Av, τv) = W (σ′v ⊗ τv),

where τv is viewed as a representation of W ′(F v/Fv). Let ωv denote the one-
dimensional representation of the Weil groupW(F v/Fv) of Fv given by

ωv|Iv = 1, ωv(Φv) = q−1
v ,

where Iv is the inertia subgroup of Gal(F v/Fv), Φv is an inverse Frobenius element
of Gal(F v/Fv), and qv is the caridnality of the residue field of Fv. By properties of
root numbers

W (σ′v ⊗ τv) = W (σ′v ⊗ ω1/2
v ⊗ τv), (6)

where σ′v ⊗ ω
1/2
v is symplectic.
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We now prove (5). Suppose v does not divide N . Then Av has good reduction
over Fv and hence by the criterion of Néron–Ogg–Šhafarevič σ′v is actually a rep-
resentation ofW(F v/Fv) trivial on Iv. Since σ′v ⊗ ω

1/2
v is symplectic, this implies

that
σ′v ⊗ ω1/2

v
∼= α⊕ α∗

for some representation α ofW(F v/Fv). Thus, taking into account that τv has finite
image and real-valued character, detα(−1) = 1 (α is unramified), and using (6) we
have

W (Av, τv) = W (σ′v ⊗ ω1/2
v ⊗ τv) = W (α⊗ τv)W ((α⊗ τv)∗) = (7)

= det(α⊗ τv)(−1) = detα(−1)dim τ · det τv(−1)dimα = det τv(−1)dimα.

Since dimα = g, mv(A) = 0, and

W (Av) = W (σ′v) = W (σ′v ⊗ ω1/2
v ) = detα(−1) = 1,

formula (7) implies (5).
Suppose v does not divide f . Then τv is unramified. Let V be a representation

space of τv, let σ′v = (σv,M), where σv is a representation of W(F v/Fv) on a
complex vector space W and M is a nilpotent endomorphism on W . Denote U =
W ⊗ V and U Iv

M⊗1 = (ker(M ⊗ 1))Iv . By definition, we have

W (σ′v ⊗ τv) = W (σv ⊗ τv) ·
δ(σ′v ⊗ τv)
|δ(σ′v ⊗ τv)|

, (8)

where δ(σ′v ⊗ τv) = det
(
−Φv|(UIv/UIvM⊗1)

)
(see [R1], §§11,12). Since τv is an

unramified representation of W(F v/Fv), we have U Iv ∼= W Iv ⊗ V and U Iv
M⊗1

∼=
W Iv
M ⊗ V , where W Iv

M = (kerM)Iv . Hence,

δ(σ′v ⊗ τv) = det
(
−Φv|(W Iv/W Iv

M )

)dim τ

· det(Φv|V )dimW Iv−dimW Iv
M = (9)

= δ(σ′v)
dim τ · det τv($v)

dimW Iv−dimW Iv
M .

Also, since τv is unramified and has finite image, for a nontrivial additive character
ψv of Fv by (3.4.6) on p. 15 in [T] we have

W (σv ⊗ τv) = W (σv)
dim τ · det τv($v)

a(σv)+2gn(ψv), (10)

where a(σv) is the exponent of the conductor of σv and n(ψv) is an integer. Putting
(8), (9), and (10) together and taking into account that the determinant of τv is ±1
(because τv has finite image and real-valued character) as well as

a(σ′v) = a(σv) + dimW Iv − dimW Iv
M ,
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we get
W (σ′v ⊗ τv) = W (σ′v)

dim τ · det τv($v)
a(σ′v).

Since det τv(−1) = 1 and by definition W (σ′v) = W (Av) and a(σ′v) = mv(A), this
implies (5).

Remark 3. In what follows by a quadratic character of Gal(Q/F ) we mean a one-
dimensional (continuous) complex representation of Gal(Q/F ) of order 2.

Corollary 4. Let χ be a quadratic character of Gal(Q/F ) of conductor relatively
prime to N . Then

W (Aχ) = W (A,χ) = (sign(χ))g · χ(N) ·W (A) (11)

(cf. Cor. on p. 338 in [R2]).

The next corollary (Corollary 5 below) is a direct generalization to abelian va-
rieties of a result by E. Kobayashi (Thm. 2 in [K]) for elliptic curves. Using (11),
the proof of Corollary 5 is the same as in [K]. Since it is short, we reproduce it for
the sake of completeness.

Corollary 5. Let A be an abelian variety of an odd dimension over a number field
Fof an odd degree over Q. Assuming the parity conjecture (1) for A and any
quadratic character of Gal(Q/F ), we have rankZA(F ab) =∞.

Proof. The first step is to show that there exist infinitely many quadratic charac-
ters χ of Gal(Q/F ) such that W (A,χ) = −1. The claim follows from (11) pro-
vided that one can show the existence of infinitely many quadratic characters χ of
Gal(Q/F ) such that the conductor of χ is coprime with the conductor N of A,
χ(N) = 1, and sign(χ) = −W (A). We now repeat the proof in [K] (p. 298–299)
of the latter claim. Let p1, . . . , pr be all the prime ideals of the ring of integers of F
dividing the conductor N of A. Denote by p1, . . . , pr ∈ Z the primes lying below
p1, . . . , pr, respectively, i.e., piZ = pi ∩ Z, i ∈ {1, . . . , r}. Let l ∈ Z be a prime
satisfying

l ≡

{
1 mod 4p1p2 · · · pr if W (A) = −1,

−1 mod 4p1p2 · · · pr if W (A) = 1.

In both cases there are infinitely many such l by the Dirichlet’s theorem on arith-
metic progressions. Also, among those l we take the ones unramified in F (there
are still infinitely many choices). Then

K = Q
(√

(−1)
l−1
2 l

)
is a quadratic extension of Q and each pi splits in K. Hence,

L = FK = F

(√
(−1)

l−1
2 l

)
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is a quadratic extension of F (note that K 6⊆ F , since l is ramified in K and unram-
ified in F ) and each pi splits in L. Let χ be the quadratic character of Gal(Q/F )
corresponding to L, i.e., χ is the quadratic character of Gal(Q/F ) with kernel
Gal(Q/L). Since the decomposition subgroup of Gal(L/F ) corresponding to each
pi is trivial, the conductor of χ is coprime with the conductorN ofA and χ(N) = 1.
Finally, one can check that

sign(χ) = (−1)r0 ,

where r0 is the number of (infinite) real places of F that ramify in L. In the first
case (when l ≡ 1 mod 4) every real place of F is unramified in L and we have
sign(χ) = 1. In the second case (when l ≡ −1 mod 4) each real place of F
ramifies in L and since the degree of F over Q is odd, F has an odd number of real
places, so that r0 is odd and sign(χ) = −1.

In [K] the author writes that the set S of all quadratic characters χ of Gal(Q/F )
satisfying W (Aχ) = −1 together with the trivial representation of Gal(Q/F ) form
an F2-vector space (with respect to tensor product). This does not seem to be true
if W (A) = 1. Indeed, let χ1, χ2 ∈ S be two distinct quadratic characters with
conductors coprime with the conductor N of A. Then χ1⊗χ2 is not trivial with the
conductor coprime with N . Using (11), it is easy to check that

W (Aχ1⊗χ2) = W (Aχ1) ·W (Aχ2) ·W (A),

so that χ1 ⊗ χ2 6∈ S if W (A) = 1. However, as follows from the preceding
paragraph there are still infinitely many linearly independent (over F2) quadratic
characters χ satisfying W (A,χ) = W (Aχ) = −1. Let χ1, χ2, . . . ∈ S be linearly
independent and let Li ⊂ Q be the quadratic extension of F corresponding to χi,
i ∈ {1, 2, . . .}. For any quadratic character χ of Gal(Q/F ) we assume the parity
conjecture

W (A,χ) = (−1)rankZ A
χ(F ),

so that for each χi there is a point Pi ∈ Aχi(F ) of infinite order. Given the non-
trivial element σ of Gal(Li/F ) we identify Pi with an element of the subgroup

{P ∈ A(Li) | σ(P ) = −P}

via an isomorphism defining Aχi as a twist of A by a quadratic character. Then,
since Pi has an infinite order, one can easily check thatmPi 6∈ A(K) for anym ∈ Z.
Finally, one concludes that P1, P2, . . . are linearly independent over Z, for otherwise
there exists Lj contained in a compositum Li1Li2 · · ·Lik , j 6∈ {i1, i2, . . . , ik}. In
other words, χj is a non-trivial tensor product of some characters in {χ1, χ2, . . .}.
This gives a contradiction and thus A(F ab) is of infinite rank.

Remark 6. If g is even, then there are examples of abelian varieties such that
W (A) = 1 and W (Aχ) = 1 for any quadratic character χ of Gal(Q/F ), so that the
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proof of Corollary 5 cannot be applied. For example, we can take A = E × E, a
product of two eilliptic curves. Then σ′v,A = σ′v,E ⊕ σ′v,E for each place v of F , so
that W (A) = W (E)2 = 1 and W (Aχ) = W (E,χ)2 = 1. Similarly, if F is of even
degree. For example, let F be an imaginary quadratic field such that there exists an
elliptic curve E over F with good reduction everywhere. Then W (Eχ) = 1 for ev-
ery quadratic character χ of Gal(Q/F ). However, under an additional assumption
W (A) = −1 Corollary 5 remains true for a number field F of an even degree over
Q. Indeed, in the notation of the proof of Corollary 5 above one can take primes
l ∈ Z unramified in F satisfying l ≡ −1 mod 4p1p2 · · · pr. Then sign(χ) = 1
and the rest of the proof does not depend on the degree of F and carries over. In
particular, each pi still splits in L and W (Aχ) = −1 by (11).
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